Takeru Ito,*1 Keisuke Mikurube,1 Yukihiro Abe,1 Takahisa Koroki,2 Masaki Saito,2

Jun Iijima,³ Haruo Naruke,³ and Tomoji Ozeki^{*2}

¹Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292

²Department of Chemistry and Materials Science, Tokyo Institute of Technology,

2-12-1-H-63 O-okayama, Meguro-ku, Tokyo 152-8551

³Chemical Resources Laboratory, Tokyo Institute of Technology,

4259-R1-23 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503

(Received September 30, 2010; CL-100843; E-mail: takeito@keyaki.cc.u-tokai.ac.jp, tozeki@cms.titech.ac.jp)

Hybrid inorganic–organic crystals containing α - and β -type octamolybdates (α -Mo₈ and β -Mo₈) were successfully prepared by using hexadecylpyridinium (C₁₆py). Although both hybrid crystals consisted of alternate stacking patterns of monolayers of Mo₈ anions and interdigitated bilayers of C₁₆py cations, the Mo₈ inorganic monolayers had different packing patterns between the hybrid C₁₆py– α -Mo₈ and C₁₆py– β -Mo₈ crystals. Each α -Mo₈ was isolated by the inserted C₁₆py cations, while β -Mo₈ formed one-dimensional chains together with sodium cations.

Hybrid inorganic–organic layered crystals exhibit higher structural flexibility than purely inorganic compounds owing to organic components. Conductive hybrid crystals^{1–3} composed of organic molecules and inorganic anions have potential as solid electrolyte. In such hybrid layered crystals, molecular structure and arrangement of components should be precisely controlled for the emergence of conductive functions.

A combination of polyoxometalate anions and surfactant cations is promising for functional layered inorganic–organic hybrids. Polyoxometalates can add various physicochemical properties for an inorganic component,^{4,5} and surfactants lead to controllable layered structures as a structure-directing organic component.^{6–8} Several hybrid polyoxometalate–surfactant materials⁹ and hybrid layered crystals^{10–16} have been reported. Some kinds of polyoxometalates have isomers.^{17–21} Selective usage of suitable isomers could allow finer design of the structures and functions of the hybrid crystals.

Here, we report the structures of hybrid layered crystals containing hexadecylpyridinium (C₁₆py) and octamolybdate isomers, α -Mo₈O₂₆^{4–} (α -Mo₈) and β -Mo₈O₂₆^{4–} (β -Mo₈). The difference in the Mo₈ structure induced the different composition and structure of the hybrid crystals.

The hybrid crystal containing α -Mo₈ (C₁₆py– α -Mo₈) was synthesized by a modified procedure in the literature.^{22,23} The crystal structure of C₁₆py– α -Mo₈, [C₅H₅N(C₁₆H₃₃)]₄[α -Mo₈-O₂₆], was determined by X-ray structure analysis.^{24,25} C₁₆py– α -Mo₈ consists of alternating α -Mo₈ inorganic monolayers and C₁₆py organic layers (Figure 1a). The periodicity of the layers is 23.0 Å. The hexadecyl chains of C₁₆py interdigitate in the bilayers of C₁₆py, and all C–C bonds except one terminal C–C bond (C41–C42) have anti-conformation. The hydrophilic heads of C₁₆py penetrate into the α -Mo₈ inorganic monolayers (Figure 1b) as in the C₁₆py–hexamolybdate crystal¹³ and isolate each α -Mo₈ anion. There are two independent pairs of pyridine rings with a slight overlap, suggesting the presence of weak π – π

Figure 1. Crystal structure of $C_{16}py-\alpha$ -Mo₈ (C: gray, N: black, H: white; α -Mo₈ in polyhedral representations): (a) *a* axis projection and (b) molecular arrangement in the *ab* plane. The hexadecyl groups are omitted for clarity.

stacking interaction (distance between pyridine rings: 3.24-3.64 Å).

 C_{16} py– α -Mo₈ has C–H···O hydrogen bonds^{26,27} at the interface between the α -Mo₈ and C₁₆py layers. The C···O distances of the hydrogen bonds are 3.23–3.98 Å (mean value: 3.64 Å). Most hydrogen bonds are formed between oxygen atoms of α -Mo₈ and the hydrophilic head of C₁₆py (i.e., pyridine rings or methylene groups near nitrogen).

Powder X-ray diffraction patterns²⁸ of $C_{16}py-\alpha-Mo_8$ (Figure 2b) are identical to the pattern calculated from the results of single-crystal X-ray analysis (Figure 2a, Supporting Information³⁴), indicating that $C_{16}py-\alpha-Mo_8$ is formed as a single phase.

Figure 3 shows the structure of hybrid crystal composed of C₁₆py and β -Mo₈ measured at 173 K (C₁₆py- β -Mo₈-173).²⁹

1324

Figure 2. Powder X-ray diffraction patterns of a) simulation from single-crystal data of $C_{16}py-\alpha$ -Mo₈, b) observed data for $C_{16}py-\alpha$ -Mo₈, c) simulation from single-crystal data of $C_{16}py-\beta$ -Mo₈-273, and d) observed data for $C_{16}py-\beta$ -Mo₈. All the measurements were carried out at ambient temperature with Cu K α radiation.

Figure 3. Crystal structure of $C_{16}py-\beta$ -Mo₈ at 173 K (C: gray, N: black, H: white; Na: gray (larger spheres); β -Mo₈ in polyhedral representations): (a) *a* axis projection and (b) molecular arrangement in the *ab* plane. The hexadecyl groups are omitted for clarity.

Single-crystal X-ray analysis revealed the composition of $C_{16}py-\beta-Mo_8$ to be $[C_5H_5N(C_{16}H_{33})]_3Na[\beta-Mo_8O_{26}]\cdot CH_3-CN.^{29,30}$ The crystal structure of $C_{16}py-\beta-Mo_8-173$ consists of alternate stacking of $\beta-Mo_8$ inorganic monolayers and $C_{16}py$ organic layers with a periodicity of 18.6 Å (Figure 3a). As in the $C_{16}py-\alpha-Mo_8$ crystal, the hexadecyl chains of $C_{16}py$ interdigitate, and all C–C bonds except one (C7–C8) have anticonformation. $C_{16}py-\beta-Mo_8-173$ also has C–H…O hydrogen bonds at the interface between the $\beta-Mo_8$ and $C_{16}py$ layers

Figure 4. Crystal packing of $C_{16}py-\beta$ -Mo₈ at 173 (blue) and 273 K (red) in wireframe representations: (a) *a* axis and (b) *b* axis projection. The hydrogen atoms are omitted for clarity.

(C--O distance: 3.28–3.96 Å; mean value: 3.61 Å). Observed and calculated powder diffraction patterns of C_{16} py– β -Mo₈ are shown in Figures 2d and 2c, respectively.

The β -Mo₈ anions are considered to be formed by the isomerization of α -Mo₈. C₁₆py– β -Mo₈ was obtained by keeping the C₁₆py– α -Mo₈ powder in acetonitrile. Therefore, slightly dissolved C₁₆py– α -Mo₈ seems to isomerize into β -Mo₈ to reprecipitate as C₁₆py– β -Mo₈. Such isomerization between α -Mo₈ and β -Mo₈ in acetonitrile has been reported.^{17,18}

 C_{16} py- β -Mo₈ contains Na⁺ as counter cation as observed in other salts of β -Mo₈.^{31,32} The Na⁺ cations connect β -Mo₈ anions to form one-dimensional β -Mo₈–Na⁺ chains (Figure 3b). The inorganic monolayers of C_{16} py- β -Mo₈–173 are composed of the one-dimensional β -Mo₈–Na⁺ chains, inserted C_{16} py cations and acetonitrile molecules (solvent of crystallization). The space between the β -Mo₈–Na⁺ chains are filled by pyridine rings of C_{16} py and acetonitrile molecules, which are located in the vicinity of Na⁺ cations. There seems to be no interaction between pyridine rings nor between pyridine ring and acetonitrile.

The hybrid crystal of $C_{16}py-\beta-Mo_8$ exhibited a phase transition, which is common for compounds with long aliphatic chain.³³ Figure 4 shows the crystal packing of $C_{16}py-\beta-Mo_8$ measured at 173 and 273 K ($C_{16}py-\beta-Mo_8-173$ and $C_{16}py-\beta-Mo_8-273$). The *c* axis is more tilted with respect to the *ab* plane in $C_{16}py-\beta-Mo_8-273$. The packing features and molecular conformations are similar, while slight expansion in each axis of the lattice is observed in $C_{16}py-\beta-Mo_8-273$. Several torsion angles in the $C_{16}py$ tails and tilt angles of the hexadecyl tail to the pyridine ring in the $C_{16}py-\beta-Mo_8-273$, which may cause the phase transition. The structures of the one-dimensional $\beta-Mo_8-Na^+$ chains are identical before and after the phase transition,

suggesting the stability of the β -Mo₈–Na⁺ chains. C₁₆py– β -Mo₈-273 has similar C–H···O hydrogen bonds (C···O distance: 3.13–3.97 Å; mean value: 3.65 Å) to C₁₆py– β -Mo₈-173. As for C₁₆py– α -Mo₈, it was not possible to find appropriate conditions for the observation of phase transition.

In conclusion, we have reported hybrid layered inorganicorganic crystals composed of polyoxomolybdate isomers, $[C_5H_5N(C_{16}H_{33})]_4[\alpha-Mo_8O_{26}]$ ($C_{16}py-\alpha-Mo_8$) and $[C_5H_5N(C_{16}-H_{33})]_3Na[\beta-Mo_8O_{26}] \cdot CH_3CN$ ($C_{16}py-\beta-Mo_8$). Both had the alternate stacking of polyoxomolybdate monolayers and $C_{16}py$ interdigitated bilayers. The difference in the molecular structure of Mo_8 led the change in the composition and Mo_8 arrangement. The crystal structure of hybrid polyoxometalate–surfactant crystals is controllable by changing the isomer structure of polyoxometalate.

The synchrotron radiation experiment was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2007G639). This study was supported in part by Research and Study Program of Tokai University Educational System General Research Organization, and The Murata Science Foundation.

References and Notes

- 1 P. Batail, Chem. Rev. 2004, 104, 4887.
- a) E. Coronado, C. J. Gómez-García, *Chem. Rev.* **1998**, *98*, 273. b) E. Coronado, C. Giménez-Saiz, C. J. Gómez-García, *Coord. Chem. Rev.* **2005**, *249*, 1776. c) L. Ouahab, *Chem. Mater.* **1997**, *9*, 1909.
- 3 D. B. Mitzi, Prog. Inorg. Chem. 1999, 48, 1.
- 4 C. L. Hill, Chem. Rev. 1998, 98, 1.
- 5 D.-L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105.
- 6 Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, *Chem. Mater.* **1994**, *6*, 1176.
- 7 Y. Yamauchi, K. Kuroda, Chem. Asian J. 2008, 3, 664.
- 8 T. Yokoi, T. Tatsumi, J. Jpn. Pet. Inst. 2007, 50, 299.
- 9 a) A. Stein, M. Fendorf, T. P. Jarvie, K. T. Mueller, A. J. Benesi, T. E. Mallouk, *Chem. Mater.* 1995, *7*, 304. b) G. G. Janauer, A. Dobley, J. Guo, P. Zavalij, M. S. Whittingham, *Chem. Mater.* 1996, *8*, 2096. c) A. Taguchi, T. Abe, M. Iwamoto, *Adv. Mater.* 1998, *10*, 667. d) J. Do, A. J. Jacobson, *Chem. Mater.* 2001, *13*, 2436. e) S. Polarz, B. Smarsly, M. Antonietti, *ChemPhysChem* 2001, *2*, 457. f) G. Zhang, H. Ke, T. He, D. Xiao, Z. Chen, W. Yang, J. Yao, *J. Mater.* Res. 2004, *19*, 496. g) K. N. Rao, L. D. Dingwall, P. L. Gai, A. F. Lee, S. J. Tavener, N. A. Young, K. Wilson, *J. Mater. Chem.* 2008, *18*, 868. h) S. Landsmann, C. Lizandara-Pueyo, S. Polarz, *J. Am. Chem. Soc.* 2010, *132*, 5315.
- 10 G. G. Janauer, A. D. Dobley, P. Y. Zavalij, M. S. Whittingham, *Chem. Mater.* **1997**, *9*, 647.
- 11 N. Fosse, L. Brohan, J. Solid State Chem. 1999, 145, 655.
- 12 T. Ito, K. Sawada, T. Yamase, Chem. Lett. 2003, 32, 938.
- 13 T. Ito, T. Yamase, Chem. Lett. 2009, 38, 370.
- 14 T. Ito, T. Yamase, *Materials* **2010**, *3*, 158.
- 15 M. Nyman, D. Ingersoll, S. Singh, F. Bonhomme, T. M. Alam, C. J. Brinker, M. A. Rodriguez, *Chem. Mater.* 2005, 17, 2885.
- 16 M. Nyman, M. A. Rodriguez, T. M. Anderson, D. Ingersoll, Cryst. Growth Des. 2009, 9, 3590.
- 17 W. G. Klemperer, W. Shum, J. Am. Chem. Soc. 1976, 98, 8291.
- 18 J. J. Cruywagen, Adv. Inorg. Chem. 1999, 49, 127.
- 19 S. Himeno, H. Niiya, T. Ueda, Bull. Chem. Soc. Jpn. 1997, 70, 631.
- 20 R. N. Devi, J. Zubieta, Inorg. Chim. Acta 2002, 332, 72.
- 21 Y.-Q. Lan, S.-L. Li, X.-L. Wang, K.-Z. Shao, Z.-M. Su, E.-B. Wang, *Inorg. Chem.* 2008, 47, 529.
- 22 N. H. Hur, W. G. Klemperer, R.-C. Wang, Inorg. Synth. 1990, 27, 78.
- 23 $C_{16}py-\alpha$ -Mo₈: Na₂MoO₄•2H₂O (1.9 g, 8 mmol) was dissolved in H₂O (5 mL), and the pH level was adjusted to 3.0–4.5 with 6 M HCl.

To the acidified solution was added a water/ethanol (10 mL, 7:3 or 1:1 (v/v)) solution of C_{16} pyCl·H₂O (1.1 g, 3 mmol) and stirred for 10 min. The resultant suspension was filtered and dried in dark place. Hot acetonitrile solution of the crude product was kept at 315 K to give colorless plates. Anal. Calcd for $C_{84}H_{152}N_4Mo_8O_{26}$: C, 42.0; H, 6.4; N, 2.3%. Found: C, 41.2; H, 6.5; N, 2.3%. IR (KBr disk): 958 (m), 922 (s), 912 (s), 850 (m), 804 (s), 719 (w), 688 (m), 661 (s), 646 (m), 559 (w) cm⁻¹. C_{16} py– β -Mo₈: Colorless plates of C_{16} py– β -Mo₈ with different shape were obtained as the mixture by keeping acetonitrile containing the recrystallized powder of C_{16} py– β -Mo₈.

- 24 a) X-ray diffraction data for C₁₆py-α-Mo₈ and C₁₆py-β-Mo₈-173 were collected with a Rigaku MERCURY CCD diffractometer using Mo Kα radiation. Those for C₁₆py-β-Mo₈-273 were measured with a Rigaku MERCURY CCD diffractometer using synchrotron radiation from the NW2A beamline of the Advanced Ring, Photon Factory (PF) of High Energy Accelerator Research Organization (KEK). Diffraction data were collected using Crystal Clear^{24b} and processed with HKL2000.^{24c} Structures were solved by the direct method using SHELXS97 and refined by the full-matrix least-squares using SHELXL97.^{24d} b) *Crystal Clear: Molecular Structure Corporation*, Orem, UT, **2001**. c) Z. Otwinowski, W. Minor, *Methods Enzymol.* **1997**, 276, 307. d) G. M. Sheldrick, *Acta Crystallogr., Sect. A* **2008**, *64*, 112.
- 25 Crystal data for C₁₆py- α -Mo₈: C₈₄H₁₅₂N₄Mo₈O₂₆, $M_r = 2401.62$, triclinic, space group $P\bar{1}$, a = 12.6088(4), b = 18.1104(6), c = 23.8004(10) Å, $\alpha = 75.732(1)$, $\beta = 87.148(1)$, $\gamma = 89.366(2)^\circ$, V = 5260.7(3) Å³, Z = 2, T = 293(2) K, $\mu = 0.988$ mm⁻¹. 38458 reflections measured, 19817 reflections independent ($R_{int} = 0.0579$). $R_1 = 0.0503$ ($I > 2\sigma(I$)) and $wR_2 = 0.1257$ (all data). CCDC-797413.
- 26 a) G. R. Desiraju, Acc. Chem. Res. 1996, 29, 441. b) T. Steiner, Chem. Commun. 1997, 727.
- 27 a) H. Chiba, A. Wada, T. Ozeki, *Dalton Trans.* 2006, 1213. b) B. Xu, Z. Peng, Y. Wei, D. R. Powell, *Chem. Commun.* 2003, 2562. c) Y. Xia, P. Wu, Y. Wei, Y. Wang, H. Guo, *Cryst. Growth Des.* 2006, 6, 253. d) H. Suzuki, M. Hashimoto, S. Okeya, *Eur. J. Inorg. Chem.* 2004, 2632.
- 28 Powder X-ray diffraction patterns for $C_{16}py-\alpha$ -Mo₈ and $C_{16}py-\beta$ -Mo₈ were measured with Cu K α radiation using a Rigaku SmartLab diffractometer. Samples were sealed in glass capillaries to prevent efflorescence. Diffraction data were indexed and subjected to Pawley refinement using Diffrac plus TOPAS software.
- 29 Crystal data for C₁₆py– β -Mo₈-173: C₆₅H₁₁₇N₄NaMo₈O₂₆, M_r = 2161.14, triclinic, space group $P\bar{1}$, a = 13.3332(4), b = 17.0481(5), c = 18.9193(7) Å, α = 87.202(1), β = 79.651(1), γ = 76.121(3)°, V = 4106.9(2) Å³, Z = 2, T = 173(2) K, μ = 1.259 mm⁻¹. 36682 reflections measured, 20892 reflections independent (R_{int} = 0.0679). R_1 = 0.0536 ($I > 2\sigma(I)$) and wR_2 = 0.1490 (all data). CCDC-797414.
- 30 Crystal data for C₁₆py- β -Mo₈-273: C₆₅H₁₁₇N₄NaMo₈O₂₆, M_r = 2161.14, triclinic, space group $P\bar{1}$, a = 13.6023(4), b = 17.4964(6), c = 19.4011(8) Å, α = 81.378(1), β = 73.108(1), γ = 74.594(1)°, V = 4246.1(3) Å³, Z = 2, T = 273(2) K, μ = 1.112 mm⁻¹. 35427 reflections measured, 19963 reflections independent (R_{int} = 0.1084). R_1 = 0.0901 ($I > 2\sigma(I)$) and wR_2 = 0.3212 (all data). CCDC-797415.
- 31 M. McCann, K. Maddock, C. Cardin, M. Convery, V. Quillet, *Polyhedron* 1994, 13, 835.
- 32 a) S.-M. Chen, C.-Z. Lu, Y.-Q. Yu, Q.-Z. Zhang, X. He, *Inorg. Chem. Commun.* 2004, 7, 1041. b) H. Abbas, A. L. Pickering, D.-L. Long, P. Kögerler, L. Cronin, *Chem.—Eur. J.* 2005, *11*, 1071. c) H. Abbas, C. Streb, A. L. Pickering, A. R. Neil, D.-L. Long, L. Cronin, *Cryst. Growth Des.* 2008, *8*, 635.
- 33 For examples, see: a) M. Yano, T. Taketsugu, K. Hori, H. Okamoto, S. Takenaka, *Chem.—Eur. J.* 2004, *10*, 3991. b) M. Maeda, M. Nagasawa, M. Tachibana, H. Kawaji, T. Atake, A. Iida, T. Ozeki, K. Hori, *Chem. Lett.* 2004, *33*, 1566. c) G. Gbabode, P. Negrier, D. Mondieig, E. M. Calvo, T. Calvet, M. À. Cuevas-Diarte, *Chem.—Eur. J.* 2007, *13*, 3150.
- 34 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.